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U s i n g  a Dormc.11 type nonlinear t h r o r y  and the  s tabi l i ty  i n  t i i t .  si-nali 

jcc-trd to a broad class  of c i x i s y ~ n m r . t r i c  loads moving with constant  vc ioc i ty  

i s  studied. Special  c a s t s  of the  general  loading function include the moving 
0 

r ing ,  s t ep  and decayed step loads. 

Laplace t r ans fo rm -functional difference technique, 

The analys is  is c a r r i e d  out with a douLlc 

Numer ica l  r e su l t s  a r c  

PL-’ presen ted  for  the case of the moving r ing load. 
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NOMENCLATURE 

= v l a  st ic  cons tnnt s 

= shcll thickness 

= shc*ll r a d i u s  

3 2 = Eh /12(1-v ) 

= (h,;a)2/12(1-v 2 ) 

= su r facc  load 

= mass density 

= l t lad velocity 
1 /2 = f i t  L ( h / d , / ~ ' )  4Nx,;Eh] 0 

C;, V ,  'CV n2idsurfaco ciisplactments 

= axial  2nd c i rcumfcrent ia i  
c' o o r (11 na t c s 

= ini t ia l  axial  compression of 
cyl inder  

= >t re s s  function 

= , l x i symmct r i c  r e sponse  

= F / s L E h  

0 
X = N /El? 

.I. :k 
P~. , pn, P ~ , R ~ ,  nn = load parameters  

< = x-Mt 

7 = t  

p e r  trir ha  t ion quant  i t  I c h  J 

num b tl r of c i r c u I n  f e r t nt  1 al 
half WaVCS 

1 
j 
I 

coefficients of F o u r i e r  
S e r i e s  (15) I 

s r c o n d  t ransfc j r in  psran1ctt.r , 

int e g r a t  ion r on s t rint s 

b l ( r ,  i ) ,  b 2 ( r ,  i) = dciinc.d by equ,+tion (37b) 

C = defined below (37 b)  
n- r ,  i;jl. . . j 

- A = matrix defined in  (44) 

x = load p n r a m e t c r  
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1. I N  1 R O l I U C T I O N  

Quest ions conccrmng the stability oi t h ~ n  shell.; s \ ib jwt( .d  t i )  m o v ~ n ;  

l ( J d d S  occur  freqrltntly in t h e  design A n d  analyc.is u i  aerospace vchic1c.s. 

fortunatcly the mathr-matical complexity encountered with t h e  s imples t  of th(,sc 

p rob lems  is formidable  and as  a r e su l t  few or no solutions of cven  the m o s t  

idealized c a s e s  a r e  available. 

significant subse t  of t h e  g ~ ~ n e r d  question, namely on  the  instabil i ty of thin 

CldStiL ~y l inc l r i ca l  she l l s  l o a d c d  by a c l a s s  of ~ ix isyrn inc t r ic  p r e - s u r e  (11~t1-1- 

butions moving with ct>nst,tnt velucity i n  the direction of t h e  , i i t . l l  g c n t r c i t r  x. 

i:n- 

The ana lys i s  to follow focuses  on a sma l l  but 

For [i grc~!ii(.tricalIy p e r f e c t  cyllnc!rical shel l  thc. r c  ~ p r ~ n s e  to  a n  n~ - 

symmet r i c  load moving with conbtant  vi . luc- i ty  wi l l ,  of c o u r s e ,  bv a x i s y m m ( - t r i c .  

Seve ra l  invest igators  [ 1 - 5  ] h a v v  I-xarnined this  r e sponse  in the l igh t  of l incar  

shcll  thtbory. Undcr ce r t a in  circuni s tances ,  however ,  these  motions AEnn btl 

unstable with r e spec t  to  nonsymmetr lc  dis turbances.  Since such instabilitit,z 

1 ~ d d  to ei thpr  a buckllng phcnomcna o r  t i n i t c x  nonaymnictr ic  osci l la t ions,  tht-y 

a r t  of con.;iricrable in te res t .  

In thc present  pape r ,  a3 :I; ( 1  - 4  1 , the p r ~ ~ t ~ l c i m  i h  ldc,ilizc.d by  r - o n c , i c i -  

er ing  a n  infirutc, sh(Al1 length and  a s r (~~ic ly-s ta tc  :orm of thc i i x ~ ~ y i n n i ~ t r i c  

response  (Xott.: 

ciiscussion is clcvotf-d to the question of stabil i ty of t hese  s t eady-> t s t c  r r l o t i o n s .  

Tang 141 a l s G  con;i(l(.rt.cl tiit. init ial  valur .  problt In).  Tile 

Mnthcmatically,  the >htll  is modeled by a nonl inear  s t*t  o f  par t ia l  

‘ T h e  rcspcrise of the shel l  to the axisyrnrnctric iostl differcnti,il equations. 

I S  qoupii t  

mGVing with the load. Such motions cdn be vi5iializcd a s  the lirriiting C . I < ~ *  

of d t rans icn t  problem in  which the lo,id is applied and  bruught up t o  spct*c! 

from r e s t  in some mannt’r. 

to the c l a s s i ca l  concept of Pojncare ,  i.e., stabil i ty is defined on the basis o f  

;i stat ic  sviutivri of the+€ equations in  a courdinate sys tem 

The stabil i ty of th i s  r e sponse  i s  dcf ined accoruing 

/ 

the b o ~ ~ n d e d ~ e s ~  ~f 2 f i ~ ? ~ ~ x i s ; ~ . - ~ e t r i ~  p e r t ~ r b ~ d  m ~ t i o n  a b o ~ t  t h ~  iixisj-iiiiiic t r i c  
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and stabil i ty in  the qmall is con.; idrrcd.  The  u s u a l  difficulty rv,g:arding thtX ( * X i s t  - 

cnce of variable cocfficients in  t l i ~  var ia t ional  cxqu3tions is overcome by us;c oi 

a double Laplace t r ans fo rm -func tional difference technique. 
Brcrunc e$ 

+ the  scope of the siibject a n d  spacc l imitat ions,  this  paper con-  

c e r n s  only sufficient conditions for instabil i ty and a nicthod for dctcrmining a n  

upper  bound on t h r  t rans i t ion  f rom stabil i ty to instability. 4s a numer ica l  

example the  prohlcm of a moving ring load i s  cons idc r td .  

2. F O R h 4 U L A T I O K  OF TfiE PR013LEhI 

The Equations of Mot ion  

A I 1  motions of the  shcl l  will be rcfcarred to the undeiormed shcll  as 

i l lust rated in  F i g .  1. Employing a Uorinc.11 typc  thvory [GI , t h e  equations o f  

motion can  bc wri t ten  a s  a s e t  of !wo equ.it ions:  one governing t h e  racilal 

equilibrium of the shc l l  and t h e  d1it-r bt.inC; the conriitic n of compatibility. in 

t e r m s  of  thc  rndiai  c ~ ~ s p l a c t m c ~ ~ r ,  W ,  of the midsurfact.  and a strtbss function, 

F ,  these arc respectivtaly: 

w h e r e  F is related to  the s t r e s s  resal tants  by 

2 d F  NX = 3 2 F;aY 2 , N y  = a 2 F / a X  2 , NXY - - - -  axay 

fic-rc D der?otes t h e  f lexure rigidity, P the  n e r m a l  su r face  loading, p mass  

dezzitj ' ,  E: she!! th:ckceas, 2 she!! midsurface rzdius ,  2.?d n4 ti!!? biharmsnic  
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opera tor .  

Sin(- t~ v q u a t  Ions ( 1) i tre u I1 known ththir dc.rivation \vi11 not b v  c i i +  - 

cussed. 

e v e r ,  thnt the use  of (1)  rcquircq that  s t r a i n s  and  rotat ions a r c  s m a l l  c o m p r c c i  

to  unity and - << aW/a  Y. 

Donne11 and is valid if ,  upon deforming,tht squa re  of the number of c i rc i im-  

fc ren t ia l  wavcs,  n ,  is large compdred to  unity. F o r  thin shel ls  n > 3 is 

usually sufficiently la rge .  F o r  the  special  c a s e  n = 0 (axisymmt>tr ic  motir)iis 1, 

Donne l l ’ s  approximation is not involved since V and dlV/&’ a r c  i d c n t i c a i l y  ze ro .  

F ina l ly ,  it is  w i d c n t  that only radial  invrt ia  \ vas  inclu(led. 

The r c a d e r  is  r c f e r r e d  tn [ 6 ,  71 for  details. It s h o u l d  bt* notcci, h u w -  

V 
a This  latter approximation is usually assnciattxd with 

In the d iscuss ion  i t  will be convenient to introduce the nondimcnsivnal 

Substitution o f  ( 2 )  into ( I  ) yields  

4 2 G i =  ( v . 7  ) - w  ( l twoo)  
X O  xx 

4 h 2  2 4 = {--I / i 2 { 1 - v  ), C ( w h e r e  (3 ( )xxxx t2( )xxeo +( )oeoo 
and ( ) tlenott,.; a (  ) /ax ,  etc. 

X 

I 
i 3 )  

T h e  Loading Condition 
0 Tile shell  w i l l  be assurried loaded  by a n  axial  s t r e s s  resultant, I’Gx ( p o ~ i -  

tlve i n  tension)  and a n  ax isymmetr ic  l a t e r a l  pressure dist r ibut ion moving wi th  

velocity V, and defined by: 
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whcrc kl X-VL T. I I t - r p  N and K a r c  f in i te ,  1’ and P a r e  rea:  c o n 5 t P i n t b ,  
(J 0 

”6 
, P k ,  Sin, $< a r c  in general  complex valued and Rc. I2 , Q ” >  0. The quclntities n n n  

& ( t i )  and Jr(6,) a r e ,  respect ively,  the Dirac  delta functiun and the Iieavi.iltic* 

stc’p function. Severa l  examples  of the type of loads that can  bc constructed 

f r o m  equation (4 )  n r e  i l lustrated in F igs .  2a, b ,  c and d.  

I n o v i n g  ring load,  qtep load,  decayed i t t p s  and Reneral pulse  (~nciuciing intc$rna: 

p r t s s u r c  a n d  nxial rompres5ion)  rcspcct ivc ly.  

fd l l i ng  d i rec t ly  into thf. ahovc cl.iss can kJC’ closc1y approximated by (4). 

c (>e f f i c i cn t s  can  bc (i(’tcrrnined b y  a colloc-ation proccclurc or by rminim171n~ 

the total squa re  r r r o r  between the actual  load function and  tiit. a p p r r x i ~ n a t i ~ i i .  

T h c y  mcludc, the 

Afany lodd di5trlbutir)ns n(Jt 

l h t  

T h c  q i i ec f inn  o f  ~ ~ - r n n l o t ~ . n ~ c c  2f :!:e cxp=zc~:i;: p(jr;iofis uf ( 4 )  4 5  ;< c)r i( -* u’ --r - - - - - - - * *  

h a s  been d i s c u s s e d  by E r d e l y i  [ 20 ] .  

In the nondimcnsional i o r m  ( 2 )  the load vclocity will  he  d tnot fd  by 

(E/&)) so that q = (][a( s -h$t ) )  . 
I 1 1 t h  ncglc,ct of s u c l i  i d t ! , i t > t l t l l ” i  <+s r o t a r y  Invrtin,  trcin\vcar5c >Iit-ar 

dcformCition anti longitudinai lncrtid in the prcst.nt theory  wil l  ~ ~ ~ , ~ . ‘ ~ > s i t , i t c ~  

r t ~ r r i c t i o n  ori thc magnitudc of the  loac! vt.l(:,city. 

ca- ,e  whcrc. the load velocity i a  l e s s  than t f i c  minimuni velocity for which 

a s i s y m m e t r i c  sinusoidal wavt’ t ra ins  can  bc propagated i n  the shell  will be 

c ons ld t red .  

-k 
M = V, 

_- 

In t h i s  connection o l > l y  the 

T h i s  I S  equivalent to  the res t r ic t ion:  

0 .  0 where  t h e  quantity NX u i l l  bc considered only in compress ion ,  i. e .  , Nx d 0 .  

0 
For s t e e l  she l l s ,  with N X =  0 ,  V l i e s  between 400-2000 f .p.s.  for  

C G  
0 
X a/h = 1000-40 respect ively.  The  effect of N < 0 is to lower  these values .  
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0 
e of NX yielding V = 0 is the c l a s s i ca l  buc c o  l i n g  loat d u e  to axia corn - 

press ion .  For a l l  compress ive  loads l t s s  than this  value V > 0. Physicai iy  

V m a r k s  a basic  change in  the charac tc r  of the ax i symmet r i c  response.  

necess i ty  of the res t r ic t ion  (5 )  will be discussed  la te r .  

Axis ymm et r i c  R e s pons e 

c o  

The c o  

The response  of the shel l  to the load (4) will be obtained as a solution 

of equations (2)  of the form: 

f (x,O,t) = f ( X - M t ) ;  f o * ( x , 0 , t )  = f S  (x -Mt ) ;  -c; ’= 0 

00  -z e xx S xx 

Definition of Stability 

Let US perturb the steady-state  motion w and f hy, r q ~ - t r . c + i ~ ~ ~ l - t ,  :fie ,r - - - - *  - * J  S s 

quant i t ies  <(x ,O, t )  and q(x,O,t). If w and i denote the per turbed  solutions 

we have 
P P 

hnscrting wb and fp  into the nonlinear tqr ia t ions  ( 3 )  and neglecting powcrs  of 

5 and above the first we obtain l inear var ia t ional  equations for 5 and q. 

shal l  cons idcr  only those solutions of the variat ional  equations which arc’ 

W e  

r e g d a r  a s  1x1 - 03 for fixed 0 and t. If a l l  such solutions a r e  bounded a s  

t - cm the she l l  will be said to be stable,  otherwise unstable.  h4ore prec ise ly :  

w and f s  a r e  stable iff given an  E > 0 and t o 3  &= 6 ( ~  , to)  31 <(x, 8 , t  ) I  and 
5 0 
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3 .  GENERAL ANALYSIS 

T h e  Axisymmetr ic  Rcsponse 

Although equations (2 )  art nonlinear ,  the p re sen t  shel l  theory i s  s u c h  

that (2) reduce to l inear  equations for  V = a/% = 0 if i t  i s  a s sumed  that  the 

prc- tens ion  o r  compress ion  of the cyl inder ,  No is maintained as a constant 

a t  X = f 00. 

m e t r i c  equations (the r e a d e r  is rvfcrrtdd to  [8] f o r  detai ls) :  

X 
In the in t e re s t  of brevity we m e r e l y  s t a t e  the resul t ing ax i sym-  

-Ni ?c w +w +w = q[a(x-h l t ) ]  + uNX 0 

S 5 s  xxxx XX t t  

At th is  point recal l  that the cffccts of longitudinal i ne r t i a ,  r o t a r y  

iner t ia  and s h e a r  deformation v.prp neglected in  (1) and h t n c c  (6 ) .  

of the validity of these  approximations can be made  by r e fe r r ing  to the works 

of Tang [ 4 ]  and J o n e s  and Bhuta [ I ] .  

of (8)(with zero r ight  hand sidc*)with the  m o r e  exac t  theory of [ 4 ]  which includes 

both ro t a ry  iner t ia  and t r a n s v e r s t  shea r  deformation indicates  that (8)  is in 

gene ra l  a valid approximation only if the load velocity,  V, 16 l ~ s s  than the 

cutoff velocity V given by ( 5 ) .  F u r t h e r ,  t l ]  indicates the t .fft ,ct-  of longr -  

tudinal iner t ia  & r e  negligible f o r  V, < V In view of t h e s e  ret-ults w e  have 

placed the res t r ic t ion  ( 5 )  on VL . 

An cstimatc. 

A compar ison  of the phast. spec t rum 

c 0 

C O O  

The ax i symmet r i c  response of the shell is obtained by solution of (8) 

under  the condition that w 

total  differential  equation f o r  w : 

= ws(x-Mt) = w,({). This  l eads  to the following s 

S 

* 
p4w' I 1  I t (M - N  )w ' I  * w = q ( a f )  i v N X  (9)  

2 *  
S x s  S 

where  ( ) ' "  d/d(. 

Requiring only that the solutions of (9) be bounded as 16 I -. m I  cjne 

obtains w ( 6 )  as: 
9 
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where  g ( 5 , X )  r ep resen t s  the Green's function of equation (3) and has  the form:  

H e r e  

Evaluation of the integral  under the assumpt ion  that the a rgumen t s  of the 

exponentials in the loading function a r e  not roots  of the  cha rac t e r i s t i c  equation 

of ( 9 )  yields ws(E) formally as 

5 c ~. 
where  C C. , a. and a a r e  in general  complex valued and R e  ai> 0, R e  a:> 0. 

j'  J J j J J 

The Variational Equations 

In the  following, it will be convenient to  introduce the t ransformatlon:  

Application of (13) to ( 3 )  and substitution of the per turbed motions ( 7 )  into the 

resul t ing different ia l  equations yields the following var ia t ional  equations 
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and p r i m e s  denote differentiation 4 
w h e r e  V ( ) =  ( ) 6 6 6 ~  + '( )5ceo +( )ooeo 
with r e s p e c t  t o  6 .  In (14) powers  of t he  per turba t ions  higher  than t he  first 

have been neglected. 

In the  following pages  w e  construct a ce r t a in  class of solutions of thc  

var ia t iona l  equations (14) in tfir. Liplace t r a n s f o r m  piane and outline a m e t h o d  

lvhereby the  t ransi t ion from stability to  instabil i ty can be obtained for trro 

load velocity and a n  upper bound on the  t rans i t ion  for  moving loads.  

S e r i e s  R ep re s entat ion 

W e  begin by represent ing  t h e  functions 5 and q by the following Four i e r  

series 

u= 

By use of (14) one obtains the following s e t  of coupled pa r t i a l  different ia l  

equations governing 5 and q n for each in teger  n = 0,1,2,. . . rl 

Laplace Transform 

Next a Laplace  t r ans fo rm of (16) with respect to 7 is pe r fo rmed .  Th i s  

yields  in a m a t r i x  formulation: 
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where  z is  the two dimensional vector: -n 

and z is defined by -n  
a3 

-n ( c , p ) r  Je-"z -n ( 5 , T )  d 7  , 7 7 0 

0 R e p > C  

From the regular i ty  conditions on 5 and rl at  6 = - t a3 we have in addition 

the requi rement  

The t e r m s  on the right hand side of (17) r e p r e s e n t  the init ial  conditions 

For the present  ciiscus- of the  problem o r  the form of the initial dis turbance.  

sion we will  consider a s  the initial d i s turbance  a delta function in velocity 

located a t  6 = 0,  and having the form 

. 

which in tu rn  implies 
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The solution of equations (17) subject to the regular i ty  condition (20)  and 

the  init ial  conditions (21) i s  the solution of the boundary value probltmls in the 

domains -m< 6 C 0 and 0 < < w consisting of the solution to (17) with z e r o  

r ight  hand s ide ,  the condition (20), the continuity re la t ions 

and a jump condition: 

Second Laplace Trans fo rm 

W e  shal l  now construct  the solution to the se t  o f  total  differential  equa-  

t ions (17). We begin by noting the form of the var iab le  coefiicicnts.  Sincc w ( 5 )  
S 

cons is t s  of a f ini te  sum of cxponentials ( s ce  (12)) one obse rves  that the var iab le  

coefficients of (17) also cons is t  01 a sum o f  cxponentials. ln view of this i t  is 

possible  to per form a L n p l n c t  t ransform of (17) with r e spec t  to  5 .  

cons ide r ,  for the presen t ,  only the in te rva l  O <  6 < (;o and a riniiateral  t r ans fo rm 

w i l l  be applied. Inversion will  yicld a solution for 6 > 0 f rom which the solution 

i o r  6 < 0 is eas i ly  deduced. 

W e  shall 

Denoting the t ransform of Z n  by 
ixi 

one obtains the t ransformed vers ion of (17) in the form: 

Ll represent the following 2 x 2 mat r i ces :  
..- 

where L * kl, ... 
-0 
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L =  
-0 

[p 4 4  s t s  2 (M2-N * -2n 2 4  p )-2Mps 
X 

4 4  2 + 2  +p  n -n (Go- vN )+p 
X 

L s2 

2 7  
- s  

! 

2 2 2 ;  (s  -n ) i 

J 

+ 
and 4' is a two dimensional  vector containing ini t ia l  data at 

is not per t inent  to thr discussion,  

= 0 . I t s  fo rm - 
-1 Premult iplying equation (25) by L 

- P - 

, the i nve r se  of L , we obtain: 
- 0  -0 

- 
z ( 9 )  = I: A . ( s )  (s+a.) + 9 s )  (27 )  
- n  j=1 -J -n J 

where  

Equations (27 )  a r e  a sysrcrn  of l inear  functional differc.nce equations 

with var iab le  coefficients.* Our next t a sk  is to obtain a suitablt. solution to 

t h e s e  equations. Note f i r s t  that the va r i ab le  coefficients of ( 2 7 )  possess the 

property:  

T h u s ,  i t  is not surpr iz ing  that the solutions of (17) a r e  of exponential o r d e r ,  i .e . ,  

where  a and b a r e  constants  and !; n I denotes the norm of I, -n  a n d  is defined by: 

lZ i = 151 t i?" I n n n 

F o r  a d iscuss ion  of the  relationship between the Laplace t r ans fo rm and dif- 
f e r ence  equations and the so lu t ion  of difference equat ions,  s e e  [lo-121. 
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T h e r e f o r e  the 

sat isf ied:  

imp1 ie s 
03 
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03 

0 0 

following quiescent condition on the second t r ans fo rm m u s t  be 

- - 
Lim zn (9) = 0 ( 2 9 )  

The quiescent  requirement  (29) is sufficient to  rendrbr the  second trans- 

R e  s - r n  

f o r m  unique, or m o r e  specifically,  the solutlon of the di f f t rcncc  cquation 

uniqut'. 

counterpar t  of (271, ( represtnt inC the  difference between a n y  two par t lcu lar  

solut ions)  a r e  unbounded a s  R e  5 u). i5ec (81 f o r  de ta i l s ) .  'Thus on the basis 

of (29) only the  t r i v i a l  solution of the homogeneous equation can be accepted. 

T h e r e  i s  thus a unique par t icu lar  solution of (27 )  to be found. 

This follows f r o m  thra fact that  a l l  solutions of th~ homogeneous 

The des i r ed  par t icu lar  solution can  be constructed by the method oi 

ascending continiicd f rac t ions  [ l l ]  <4nd ha 5 the form:  

Equation (30a) c a n  be wr i t ten  in  closed fo rm as: 

where  o 0. 
J O  

The  vec to r  function (30 )  above formal ly  sa t i s f i e s  the difference equation 

(27) and the quiescent  requi rement  (29). F u r t h e r ,  the component series f o r  

the vector zn are  absolutely and uniformly convergent  with respect to s and 
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r e p r e s e n t  analytic functions of s when s c €4, where the region R of the complcx 

s -p l ane  is defined by 

i s -  ( p i - m 1 5 - m 2 a 2 -  ...- m a ) I  2 t 7 o 

m = 0 , 1 , 2 , . * *  ; j = 1 , 2  ,..., E . 
I 1  

j 

H e r e  p.  are the roots  of the polynomial A L  ( s )  = 0 where  A L  denotes the 

determinant  of L The singular i t ies  of z (s)  a r e  i so la ted  poles ,  located a t  
1 -0 -0 

= 
-0 -n 

- mlal-m a -. . . - m E a p  , 5 = p .  2 2  1 

m = 0 , 1 y 2 y B e . ,  j - 1,2 ,..., f 
J 

If a l l  problem paramcxtcrs a r e  fixc,tl, including p ,  t h e s e  poles l i t  a finite d i s -  

tance to the right of Re s = 0 and I ( s )  i s  regular  f o r  R e  s >C 

Additional detai ls  and a proof of convergence can be found in 18 ] .  

= constant.  
- n  1 

Inversion of the s - t r a n s f o r m  

W e  will now invert  the s e r i e s  (30 )  t e r m  by t e r m ,  a s s u m i n g  the roots  

p .  a r c  non-rept,ated ( these points to be discussed  l a t e r ) .  Consider  f i r s t  the 
1 

definitions: 

8 
.- QW = n (s-P,)$(s} 

q=l 

th The Pi- t e r m  of equation ( 3 0 b )  is composed of the product 

(31) 

B. (sta. t.. .tu. ) .L"(s+cY. +. . . +G: ) ." B j  ( 9 )  B. (stCY. ) . -32 ... -J,1; J: "-1 . J: JS 
- 

i 

8 th 
where  I1 denotes I1 . 
the r e s idue  theorem. 

Ln t h e  N-term, each fac tor  i s  inverted separa te ly  by 
q= l  

The inversion of the en t i r e  t e r m  is then obtained by 
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- 
following s e r i e s  is  obtained for z ( 5 , ~ ) :  -n 

where  ( 3 3 )  

rPk 

I h p  vcc to r s  Q . , which con ta in  unknown iniorrnation conctrnirig a n d  
-1 n 

- r r i  t 
q 

constants  to  be evaluated la te r  f rom the boundary conditions. The e lements  

of each i- vec to r ,  however ,  a r e  not independent but a r e  re la ted  through the 

different ia l  equations (17 ). 

and the i r  der ivat ives  (up t o  the F-1 at = 0 , can bc r ega rded  as  a r b i t r a r y  n 

th 

2 By direct  substi tution of (32 )  into (17) (with z e r o  

right -hand s ide)  one finds the differential  equations a r e  formally sat isf ied 

f o r  each i = 1 , 2 , .  . ,8  if the elements of Q . a r e  re la ted  according to: 
-1 

This  cumbersome task can be accomplished by writ ing C - Ec. and observing 
Equation (34) then guarantees  tAat f : 7 )  is sat-  j -  

that (32)  is a power s e r i e s  in 
isf ied for each order  of € . . 
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2 2 2  
( P i - "  1 

and G. a r e  a r b i t r a r y  s c a l a r  constants .  2 1 
where  S = - i 

P: A 
Each value of i = 1 ,2 ,  . . . ,8 in equation (32) r e p r e s e n t s  a l inear ly  inde- 

pendent solution to  ( 1 ' 7 )  when the p .  a r e  non-repeated.  Therefore  (32) r e p r e -  

s en t s  the genera l  solution to the homogeneous p a r t  of (17) for  5 > 0 when the p 

1 

i 

a r e  non-repeated. 

The function z ( 5 ,  p) f o r  < 0 is eas i ly  obtained by inspection f r o m  -n * 
equation (32). One need only replacc 1 ,  a., C .  and p in (32) by P S ,  -a. * c,* 

J J  i J 
4 

and p respect ively whcrc  i * *  4: 
1 ) P , a. and C. a r e  obtained from equation ( 1 2 )  

2) p i  a r e  the roots  of AL 
J J * * 

= 0 with Go replaced by Go. 
-0 

-c M'e will indicate these changes by " s t a r r ing"  all 

quantit ies where  changes occur .  

the changes: 

Then,  for  6 < 0 ,  z h a s  the form ( 3 2 )  with -n  

.. 
The unknown constants G. and CT a r e  determined f rom the  regular i ty  

1 * 

condition (201, t h e  continuity requirement  (22 ) ,  and the jump condition ( 2 3 ) .  

Consider  f i r s t  the continuity and jump relat ions.  3 Using the  identity 

N N 
C p p  / 11 (p -p  ) = 0 when N > m+l and p are non-repea ted ,  

k q  q k=l q=? 

one can show the s e r i e s  ( 3 2 )  and its equivalcnt for 5 < O  possess t he  following 

proper ty  a t  E = 0 
t 

and 5 = 0-: 

' This  i8 eas i ly  ver i f ied by expanding the leading t e r m  in pa r t i a l  f ract ions.  
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Equations (40) r ep resen t  8 equations in the eight unknowns, G.( i=l  to 8 ) .  

IHowever, it can be shown that only 4 (one row) equations a r e  l inear ly  indepen-  

dent.  With the vec tor  components b r , i )  and b2 ( r , i )  a s  defined in (37b) ,  these  

4 equations a r e  

1 

1 

8 
2; b2(r , i )Gi  = 0, r = 1 to  4 
i=l 

In a s i m i l a r  manner ,  (20) can bc. sat isf ied for  6 -). -00 only if  

8 *  * 
C bZ ( r , i )  G. = 0, i=l 1 

r = 5 to 8 

t 
w h e r e  b is obtained from b b y  the. paramet r ic  changes descr ibed  previously.  2 2 

The constants  G. and G. can now bc dttermineci f r o m  equations ( 3 6 ) ,  
* 

1 1 

(41) and (42). In m a t r i x  fo rm we have 

A g = e  .II, 

where  A is a 16 x 16 ma t r ix ,  the elements of which a r e  given by: - 
I 
I A = b 2 ( r , i )  r , i  

1 r = l t o 4 ,  i = l t o S  

= o  Ar,  i t 8  
1 

I 

r = i t o 4 ,  i = l t o 8  

-+--------- - m -1 
4 

4 * !  
= -pi s; ' 

I & I  
! Arn t4 ,  i t 8  
I I m = I t o 4 ,  i = l t o 8  

m-1 1 Arn+8,i pi Am+8 

i m = l t o 4 ,  i = l t o 8  / j 
1 1 ~ ~ ~ l t o 4 ,  i x l t 0 8  

I 

* i Ar+8, i t 8  = b 2 ( r , i )  I 

I 

( 4 3 )  

I 
i 

r = 5 t o 8 ,  i = l t o 8  I 1 
I r = 5 t o 8 ,  i = l t o 8  
i 

where ,  as usual ,  the f i r s t  subscript  r e f e r s  to  the row and the second the 

column. 
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The  quant i t ies  and t represent  thp following 16 dimensional  v e c t o r s  - 

€i= 
j .  I 

Premult iplying ( 4 3 )  by A-I,  we obtain as 

-1 & = A  e 
. L I -  

(45) 

The solution is now complt te .  Next we d i scuss  a few p rope r t i e s  of the 

s e r i e s  f o r  z . --n 

P r o p e r t i e s  of ( 6 , ~ )  and Remarks  Rc.ldtcd to the s - h v r r s i o n  -n 
- 

The assumption was made, upon inverting E ( s ) ,  that  the roo t s  p and 
aAL (s.p)’ -n 

4. 

# O  -0 7 

were not repcated. F o r  a l l  points in the p-plane such that P i  as 
the  roots  of AL ( s . p )  = 0 are non-rcpeacei.  It can be shown that 

-0 
aAL ( s , p )  

- 0  = A L  ( s , p )  = 0 occur5  o n l y  n t  branch points of the roots  a s  a i u n c -  
a s  -0 

tion of p in the p-plane.  

Now,  iet  u s  define the region R,of the complex p-plane by: 

( I )  Ip-pbl 3 t > 0 ,  where  p arc. branch points of the roots  p . ( p )  and 1 b 1 
z 
1 

p.  (p)  in  the p-plane. 

(2 )  ip-pal  2 > i), whcre p a r e  z e r o s  of the de te rminant  of A ,  A A .  & 2  A I - 
If p E R ,  and - m10< - B <  x < U <  00, €3 = a r b i t r a r y  constant ,  the s e r i e s  ( 3 2 )  a n d  

i t s  counterpar t  for f <  0 a r e  absolutely and uniformly convergent with r e s p c c t  

t o  both th 
and p. Since the series obtained by an  n- t e rm by t e r m  e-der ivat ive 

possesses the s a m e  proper ty  of uniform convergence with r e s p e c t  t o  6 ,  o u r  

differentiation of the s e r i e s  w a s  justified. 

Lf appropr ia te  branch cuts  within the region R , a r e  m a d e  to r e n d e r  the 
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roo t s  analytic functions of p ,  then each t e r m  oi the s e r i e s  will  be an analytic 

function of p. 

z ( 6 , ~ )  i s  an analytic function of p when p E Rp 
-n  A 
determinant  of A vanishes  r ep r r sen t  poles of Z 

possible  branch  points of z 
etc. , can  be found in  [ 8 ] , 

Instabil i ty Condition s 

The  uniform convergence with r e spec t  to p then indicates  
- 

The points p for which the 

The points p are b - n* 

Additional detai ls  and proofs  of convergence,  no 

The vec tor  z 
Indeed the houndedness of z 

of Fingularit ies of z 
fo rm [8,10,14] z will be unbounded a s  7 --.I u3 i f  p o s s e s s e s  s ingular i t ies  

of any  type in R e  p > 0. 

n e c e s s a r y  to  show a singularity exis ts  in R e  p > 0. 

need not bt inverted to obtain stabil i ty information. 

i s  governed ent i re ly  by the location and type 

-n 

-n 

in the p-planc. Fr(lrn the theory of the Laplace t r a n s -  -n 

-n -n  

To demonstrate  instabil i ty,  t h t r e f o r e ,  i t  is only 

The possible  s ingular i t ies  of z in  R e  p > 0 cons is t  of branch points 

It will suffice to consider ju s t  the poles ,  which occur only when 

- n  

and poles. 

AA vanishes .  

case.  

t h r r e f o r e  the cnergy method and the present  dynamic rric*thod a r e  equivalent 

[ 151 . 
presen t  shel l  theory ,  assuming f, and q a r e  v i r tua l  displacements  f r o m  the 

loaded s ta te ,  then equations (14) with a/a7 = 0 a r e  the r e su l t  of requi r ing  that 

the second var ia t ion of the potential energy  vanish (a n e c e s s a r y  condition for 

the t rans i t ion  from stabil i ty to  instabil i ty),  Equations (15) and ( 3 2 )  with i, = 0 

r ep resen t  a solution to these  equations which is completed by requir ing that 

6 and q be regu la r  as  15 1 -. OD and continuity of 5 and q and the i r  dc r iva -  

t ives  with r e s p e c t  to x up to and including the th i rd  at x = 0. 

these  conditions l eads  to  the eigenvalue problem: 

To gain insight into t h e  problem let  us proceed irorn the s ta t i c  - 
If M = 0 the shel l  and loading reprc.sent a conservat ive sys t cm and 

If one ca lcu la tes  the potential energy of the sys t cm according to the 

Application of 
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& . = O  (47 i 

whereby a solution ex is t s  iff AA = 0. Th i s ,  however ,  impl ies  the t r ans i t i on  

from stabi l i ty  to instabi l i ty  according to the dynamic method occur s  a t  p = 0 

i n  the  p-plane. 

c r i t i c a l  values.  

-LI 

This zero can be expected to  move into R e  p >  0 f o r  nbovc 

For M # 0 the situation is of c o u r s e  m o r e  complex s ince the sys t em 

i s  nonconservative and the variational equations a r e  non-sclf:iidjcrint. 

note first tha t  if p = 0, the parameter  13.4 occur s  everywhere i n  tiit- combination 

h i2-N . It therefore  has  t h e  same effect  as an ax ia l  compress ion  o i  thc 

cyl inder .  

M # 0),  save an effective change in N 

problem that a z e r o  of Ail  will appear a t  p = 0 for  some  s e t  of loEtti p a r a m e t e r s .  

This  z e r o  can be expected to  move into R e  p > 0 for  increased load magnitudes 

'Are 

* 
X 

Since AA (p = 0, M = 0) p o s s e s s e s  the same pr0pert i f .a  as  Ai\ i;, = 0 ,  
.LI) - * 

one deduces by analogy to the static 
X I  

- 

indicating an  unstable  shell. 

The above discussion indicdt ts  a method whereby one can obtain 1) the 

t rans i t ion  f rom stabil i ty to instability f o r  M J 0 and 2)  an upper bound on the 

t rans i t ion  for  12?> 0. This  is accomplished by 1) select ing a i i  she i l  ana loau 

p a r a m e t e r s  and a value of n ,  2) selecting a c h a r a c t e r i s t i c  load p a r a m e t e r ,  

say  A, which is a function only of C. and C 

s e r i e s  (37b),  numer ica l ly  plotting AA f o r  p = 0 v e r s u s  A, select ing that  value 

of X f o r  which a zero f i r s t  occu r s  and minimizing with r e s p e c t  t o  n .  

* 
for  j > 04'1 3 )  truncating the 

J j 

- 
Cihht 

this load is an upper bound for  M > 0 can be eas i ly  demonst ra ted  by numcr i -  

cal ly  showing that  the ze ro  m o v e s  into Re p > 0 for l a r g e r  X va.Iut!s. 

For purposes  of the above calculation i t  can be shown that it is  s u i -  
s 5  

i ic ient  t o  group the roots  p .  and p .  
* * 

'Since the roots  pi and p i  do not depend on Cj, Cj for j > O  they need not bc 
recalculated f o r  each X ir h is selected in  this  manner .  

Explicit  fo rmulas  for the roots p i  and p i  for the  case M = 0 c a n  be founu 
in  [lb! 

according to t h e i r  r e a l  p a r t s ,  denoting 
1 1 

* 
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those with posit ive r e a l  pa r t s  as i = I to 4 and those with negative r e a l  pa r t s  

a s  i = 5 to 8. The o r d e r  of any roo t s  with zero real p a r t s  is not impurtant .  

4. N U M E R I C A L  E X A M P L E  

Let us  consider  as a numerical  example the case  of a r ing  load moving 

with constant velocity. Here  the load is defined by 

and is  i l lus t ra ted  in F i g .  2a. The ax i symmet r i c  response  f o r  this load h a s  

the  form (11) i f  the constants g a r c  multiplied by P /Eh, i.e.,  J C 

4. 11 
P * c  C . = C .  = -  g . ,  j = 1 , 2 ; C . = C .  = 0 ,  j = O a n d j > 2  

J J Eh J J J 

::e 

a. = a 

If we se l ec t  as the parameter  X the quantity Pc /Eh, the m a t r i x  A (44) 

given by (11) fo r  j = 1,2. 
1 J  

- 
can  be writ ten 

2 3 
LI A = K  -0 + X K l + X E 2 + A  - s 3 +  ... 

where  t h e  m a t r i c e s  K .  do not dcppnd on  A. 
-J  

T h e y  a r e  obtained f rom (44)  by 

grouping te rms  of l ike h powers.  

Truncating the s e r i c s  ( 5 0 )  and setting p = 0 ,  AA was numerical ly  
1111 

evaluated by use  of a digital  computer.  

to de te rmine  the minimum A for which a z e r o  of AA occur red  at p = 0 (AA 

was found to be r ea l  valued for p = 0). In the neighborhood of this  valuc of h 

(SO) was found to converge quitc rapidly f o r  a wide range  of she l l  p a r a m v t e r s  

For all c a s e s  where  h1 < .95 the correct ion d u e  to the re tent ion of mort. 

A Reguli  F a l s i  method was employed 

\ ah = 100 TO io00 ) 

t 

than t h r e e  t e r m s  of (50) was found to be negligible. 

The behavior of the minimum eigenvalue as  a function of the number 

, is i l lus t ra ted  in Fig.  3a for of c i r cumfe ren t i a i  waves ,  n and velocity, Vi 
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the case  a/h = 100 and v = 0 . 3 .  

of F ig .  3b can be constructed.  

F o r  each value of n a curve  s i m i l a r  to  that 
6 

Fig. 3b is  thc minimum envelope of all such 

c u r v e s  and r e p r e s e n t s  an upper bound on the t rans i t ion  from stabil i ty to 

instabil i ty.  The shel l  i s  unstable i o r  all loads  above the solid l ine.  This 

w a s  ver i f ied  numerical ly  by selecting a s m a l l  posit ive real p value and showing 

that  a z e r o  of A& occur red  i n  Rt p > O  for loads above th i s  line. 

va lues  in the  range of 100-1000 the f o r m  of the  curvc  in Fig.  3 b  w a s  found to 

F o r  all a/h 

r e m a i n  essent ia l ly  invariant.  

For M or  V,= 0 ,  the resul ts  obtained w e r e  the buckling load for  an  

infinite shel l  subjcct  t o  a uriiiorm radial  line load. 

m a d e  with existing ana lyses  on the subject  for a/h = 100. 

Below a compar i son  is 

Fig.  4 indicates  

the  behavior of th i s  buckling load z s  a function of a/h. 

Pc/Eh = 3 . 9 1 ~  Pr c sent  theory: 

- 4  

- 4  

Brush  [ l S ]  , long finite shell: " = 4.20 x 10 

Hahne 1 1 9 1 ,  t I  / I  , ' I  = 4.61 x 10 

The  ag reemen t  is quite good. Nu compar ison  car: be made for  the dynamic 

c a s e  s ince ana lyses  on the  subjcct appsrerit ly do not c , s ; s t .  

An in te res t ing  r e su l t  c a n  be observed  from F i g .  3b. P r i sek in  [ 2 ]  

suggested that sinct. the amplituuc of the ax i symmet r i c  response  v a r i e s  

inverse ly  wi th  [ l-{VL-Vco) ] 

should be proport ional  to  this  quantity. 

i l /2 
the t rans i t ion  from stabi l i ty  to instabil i ty 

Our r e s u l t s ,  however ,  indicate this 

t rans i t ion  shouid lie below or  a t  a c u r v e  which is v e r y  c lose ly  approximnted 

2 
by 1 -(vL i V C O )  

C onc 1 uding R e m a r k s  

A method f o r  determining ( 1 )  the  t ransi t ion f r o m  stabi l i ty  to  ins tab i l i ty  

' Axial compress ion  an eas i ly  be. incorporated into these  r e s u l t s  by rep lac ing  
VL /vco by C(VL / V C J  ' - INx/h)(  a J 304a) 1 \/2L W h e r e  I -  both c a n e 5  YCO (5 
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f o r  a c l a s s  of ax i symmet r i c  static pressure dist r ibut ions and ( 2 )  a n  upper 

bound on th i s  t ransi t ion when the distribution moves w-ith constant vclocity 

has  been discussed.  Utilizing the method the c a s e  of a moving ring load was 

considered. This  example indicated a marked  d e c r e a s e  in s tabi l i ty  a s  the 

load velocity approached the minimum velocity f o r  which ax i symmet r i c  

sinusoidal wave t r a i n s  can  be propagated in the shell. 

Naturally one would like to in t e rp re t  the r e su l t s  of the analysis  in 

t e r m s  of shell  buckling. A s  with any infinitesimal s tabi l i ty  ana lys i s ,  how-  

ever,  c a r e  mus t  be exerc ised  in h i s  rcspect .  For example,  s t a t e s  that  a r e  

found stabie by an infinitesimal analysis may actual ly  be unstshlt7 i f  finite 

d i s turbances  a r e  Considered. In the prcscn t  c a s e  one cannot differentiate 

between instabi l i t ies  that lead to buckling o r  those that mere ly  lead to 

finite nonsymm e t r i c  oscil lations.  
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. Compression: P(C,)= -P,+H(C,) Z P exp[ -RnC,] n = l  n 
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Application of (22) and (23) with use of (35) yield 

m *m * 8 
C pi Gi - pi Gi = 0 ,  m = 0 , 1 , 2 , 3  
i = l  

m *m 8 8 8 
C pi SiGi-pi Si Gi = 0 ,  m = 0 , 1 , 2  
i=l  

* 
*3 S,Gi = l /p4 8 3  

I; P i  s p i  - P i  
i=1 L 

To apply the condition (LO) it is necessary to obtain from ( 3 2 )  the limit- 

ing form of; for large {. One f i n d s  
...\ 

where 

+ c  I; 8 R .  (r)  R . (kl)*C * c  ( 3 7 5 )  P 
j l , jz=l  %=1-J1 -32 r ,  kl;jl r,i;jhj2 + . . . 

I 8 
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In the above,  d r i  is t h e  Kronecker delta and the quantit ies C 

defined by: 

. . . a r e  
N r * l ; J l . . . , j  

ThaX 
Equation (37a) indicatestthe growth o r  decay of a s  6 - a3 depends -n 

en t i re ly  on the sign of R e  p r = 1,2, . . . , 8 .  

sa t i s f ied  it is n e c e s s a r y  to consider  C l a rge  in (19) and de termine  the l a r g e  

lpl  behavior of the roots  p . ( p ) .  

To asce r t a in  if (20) can  be 

This i s  accomplished by noting that the 
1 

A L = 0 is satisfied by the asymptotic s e r i e s :  
-0 t q v ~ t t o n  

Equations governing the coefficients,  5 , are obtained by substituting (38 )  into 

A L  

f o r  the leading t e rms  of (38)  yield the fullowing asymptotic values:  

n 

= 0 and equating t e r m s  of the same p-order .  Solution of those equations 
-0 

where  the designations a s  to root number were  purely a r b i t r a r y .  

Identifying the roots  by their  asymptotic va lues  above and selecting the 

positive branch of Up in the p-plane, i t  i s  evident that  ( 2 0 )  can  be sat isf ied 

only if 

1 G~ = o for r = i to 4. i=l " I  bZ(rI i)  


